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This document is intended as a review guide for a few topics we covered
in the second half of the semester in Statistics I, Fall 2015.

1 MLE estimation

Maximum likelihood estimation (MLE) is a way of getting an estimator.
In particular, MLE asks "What’s the value for this parameter that makes
my data the most likely to have occurred?" In order to get this, all we
need to do is to write out the likelihood function then find its maximum.
Oftentimes, we’ll take the log of the likelihood function before finding the
maximum because taking the derivative of the log of the likelihood function
is oftentimes easier. It will give you the same value, though.

1.1 Step 1: Find the likelihood function

We can find the likelihood function L(θ) by simply multiplying together the
probability of each Xi, if they’re independent (which is what we generally
assume). That’s simple to do:

L(θ) =
n∏

i=1

f(xi|θ) (1)

1.1.1 Step 1b

Mathematically, the product from the previous equation becomes difficult
to work with for a variety of reasons. Therefore, we oftentimes take the log
of the likelihood function which turns the product into summation. Note
that for very simple examples, this isn’t necessary. For more complicated
examples, this makes your life easier. It is also how computers calculate
MLE.
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log(L(x|θ)) = L(x|θ) =
n∑

i=1

f(xi|θ) (2)

Note that this step isn’t absolutely necessary. It just makes the math
easier (usually) and will always give the same values as if you didn’t take
the log.

1.2 Step 3: Find the maximum of the log-likelihood

Now that we have formally specified the likelihood of our data in terms of an
unknown θ, we can find the value for θ that maximizes the likelihood of our
data. We could do this by hand, plugging in all of the possible values for θ.
But that would take a while and be a lot of work, so we can use optimization
instead. This is the process of finding the maximum (or minimum) of a
function.

Mechanically, this is pretty simple. We simply take the derivative of the
(log) likelihood and set it equal to zero. To ensure we’ve found a maximum
(instead of a minimum), we also need to check the second derivative to make
sure it’s negative.

1.3 Example

Suppose that X is a Bernoulli random variable and we observe 183 0’s and
78 1’s. What is the MLE for p?

1.3.1 Find likelihood function

If we let k represent the number of successes we have, then the likelihood
function is then:

L(X|p) =

n∏
i=1

Pr(X = xi|p)

= pk(1− p)n−k

(3)

Which for our data is simply L(X|p) = p78(1− p)261−78

At this point, if the likelihood function looks like it’s going to be a beast
to maximize, you can take the log of it to make the math easier. This one
won’t give us a problem, though.
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We can look at the likelihood function to see where we think our estimate
might be. We can see from Figure 1 that the maximum likelihood of our
data occurs somewhere around θ = 0.26.

our_like<- function(p){
p ^ 78 * (1 - p) ^ (261 - 78)

}

ggplot2::qplot(c(0,1), stat = "function",
fun = our_like,
geom = "line")

Figure 1: Graph of the log likelihood for varying thetas

1.3.2 Obtaining the MLE estimate

Although from the previous graph it’s pretty obvious that the MLE estimate
will be somewhere around 0.26, it would still be nice to formally know this.
We start by finding the derivative:
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dL(X|p)
dp

= kpk−1(1− p)n−k + pk(n− k)(1− p)n−k−1(−1) (4)

We can then set the derivative equal to zero and solve.

0 = kpk−1(1− p)n−k + pk(n− k)(1− p)n−k−1(−1)

kpk−1(1− p)n−k = pk(n− k)(1− p)n−k−1

k(1− p) = p(n− k)

k − kp = pn− pk

p =
k

n

So here p̂MLE = k
n = 78261 ≈ 0.299

1.4 Example 2

Suppose that X is a discrete random variable with the following probability
mass function where 0 ≤ θ ≤ 1:

X Pr(X)

0
2θ

3

1
θ

3

2
2(1− θ)

3

3
1− θ

3

We observe the following data: (3, 0, 2, 1, 3, 2, 1, 0, 2, 1). What is the MLE
of θ?

1.4.1 Find likelihood function

The likelihood function is then:

L(X|θ) =Pr(X = 3)Pr(X + 0)Pr(X = 2)Pr(X = 1)Pr(X = 3)

Pr(X = 2)Pr(X = 1)Pr(X = 0)Pr(X = 2)Pr(X = 1)
(5)

We can plug in from the pmf to find the probabilities:

L(X|θ) =

(
2θ

3

)2(θ
3

)3(2(1− θ)
3

)3(1− θ
3

)2

(6)
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Which is going to be a beast to maximize. So we’ll follow the advice of
1.1.1 above and take the log of the function:

L(X|θ) = 2

(
log

2

3
+ log θ

)
+ 3

(
log

1

3
+ log θ

)
+ 3

(
log

2

3
+ log(1− θ)

)
+ 2

(
log

1

3
+ log(1− θ)

)
= C + 5 log θ + 5 log(1− θ)

(7)

Where C is some constant that doesn’t depend on θ. Taking the deriva-
tive of that will be much easier than the likelihood function above.

We can look at the log likelihood function to see where we think our
estimate might be. We can see from Figure 2 that the maximum likelihood
of our data occurs somewhere around θ = 0.5.

our_log_like<- function(theta){
5 * log(theta) + 5 * log(1 - theta)

}

ggplot2::qplot(c(0,1), stat = "function",
fun = our_log_like,
geom = "line")

1.4.2 Obtaining the MLE estimate

Although from the previous graph it’s pretty obvious that the MLE estimate
will be somewhere around 0.5, it would still be nice to formally know this.
We start by finding the derivative:

dL(X|θ)
dθ

=
5

θ
− 5

1− θ
(8)

We can then set the derivative equal to zero and solve.
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Figure 2: Graph of the log likelihood for varying thetas

0 =
5

θ
− 5

1− θ
5

1− θ
=

5

θ

5θ = 5(1− θ)
5θ = 5− 5θ

10θ = 5

θ̂MLE =
1

2

2 MOM estimation

Method of Moments estimation (MOM) is another way of getting estimators,
just like MLE. It asks a slightly different question to get these estimators,
though. Whereas MLE find the value of the parameter(s) that make your
data the most likely to have occurred, MOM simply states that your sample
"moments" are good estimators of the theoretical moments.
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The general way to find the MOM estimators are to find the first K
theoretical and sample moments, where K represents the number of equa-
tions you have. You then set them equal to one another and solve for your
estimators.

2.1 Find the theoretical moments

The theoretical moments are simple. They’re just E(Xk) where k represents
the theoretical moment. So if you want the first theoretical moment, that’s
just E(X1), or just E(X). The second theoretical moment is just E(X2)
and so on for higher-order moments.

2.2 Find the sample moments

The sample moments are just as easy to find as the theoretical moments.
The kth sample moment is just

Mk =
1

n

n∑
i=1

Xk
i (9)

Note that the first sample moment is
1

n

∑n
i=1Xi, which is simply x̄

2.3 Set these equal and solve

2.4 Example 1

Let x1, x2, ...xn be random draws from a uniform distribution with an un-
known lower bound but an upper bound of 100 (i.e. xi ∼ U(a, 100))

Then the pdf of this is:

f(x) =

{
1

100−a a ≤ x ≤ 100

0 otherwise
(10)

Find the method of moments estimator for a.

2.4.1 Theoretical moments

We are estimating one parameter, so we only need to find the first theoretical
moment. For a uniform, this is:

E(X) =

∫ b

a

x

100− a
dx =

a+ 100

2
(11)
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2.4.2 Sample moments

Again, we just need to find the first one, which is simply:

1

n

n∑
i=1

xi = x̄ (12)

2.4.3 Solve for the estimator

We set these equal and solve for the MOM estimator:

x̄ =
a+ 100

2
2x̄ = a+ 100

2x̄− 100 = a

So aMOM = 2x̄− 100.

2.5 Example 2

Let x1, x2, ...xn be random draws from a uniform distribution (i.e. X ∼
U(a, b)) and we need to calculate both of the bounds(a and b). Remember
that the pdf of a uniform distribution is

f(x) =

{
1

b−a a ≤ x ≤ b
0 otherwise

(13)

2.5.1 Theoretical moments

Since we have two unknown parameters, we need to calculate the first two
theoretical moments:

E(X) =

∫ b

a

x

b− a
dx =

a+ b

2
(14)

E(X2) =

∫ b

a

x2

b− a
dx =

a2 + ab+ b2

3
(15)
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2.5.2 Sample moments

We need to find the first two sample moments:

1

n

n∑
i=1

xi = x̄ (16)

1

n

n∑
i=1

x2i = m2 (17)

2.5.3 Set theoretical and sample moments equal and solve

Now we just set the theoretical moments and sample moments equal to each
other and solve to find our estimators.

x̄ =
a+ b

2
m2 =

a2 + ab+ b2

3
(18)

When we solve for a and b, we get that (after some nasty algebra):

â = x̄−
√

3 (m2 − x̄2) b̂ = x̄+
√

3 (m2 − x̄2) (19)

3 Significance & Power

There are two kinds of errors we can make in hypothesis testing. A Type I
error is committed when we reject H0 when H0 is actually true. We make a
Type II error when we fail to reject a false null. Table 3 nicely summarizes
this relationship.

H0 Decision
Reject Fail to Reject

True Type I X
False X Type II

There’s an obvious tradeoff here between the frequency with which we
commit either kind of error. In the limit, if we never reject a null, then we’ll
never commit a Type I error, but we’ll never reject a false null either. We
can formally define the probability of committing either kinds of error.
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3.1 Significance

α = Pr(Type I error|H0) (20)

Thus, α represents the probability of making a Type I error if the null is
actually true. We use α such that there is (1−α) probability of being inside
the critical region is our null is true. If we see a test statistic outside that
critical region, then we know there is a less than α percent chance that that
would happen purely due to randomness if the null were actually true. This
is the significance of a test.

3.2 Power

β = Pr(Type II error) (21)

β, on the other hand, represents the probability of committing a Type
II error. This is impossible to mathematically calculate most of the time,
though. It’s not enough just to say that the null isn’t true - we need to
specify what the true parameter is equal to in order to calculate β. We refer
to (1− β) as the power of a test. Usually, we’ll look at how power varies as
a function of unknown parameters or n.

3.2.1 Example

You’ve designed an experiment to test the effect of disgust on attitudes
towards the incumbent. From the results of a pilot study, you believe that
attitudes toward the incumbent are normally distributed with a mean of 50
and standard deviation of 6. You believe that your treatment will increase
the mean by 4 points. How many participants do you need in order to detect
this with 90 percent probability? Use a two-tailed test and α = 0.05.

Note here that H0 : µ = 50 and HA : µ 6= 50. For this example, we’ll
assume that we know the standard deviation is 6. Relaxing that assumption
is pretty straightforward, though. So note that under the null, our estimator
x̄ ∼ N(50, 6

2

n ) and that if our guess about the effect size is true, then x̄ ∼
N(54, 6

2

n ).
We can calculate the critical values as a function of n:

50± 1.96

(√
62

n

)
(22)

So we’ll reject if we see a value lower than that when we subtract or great
than that when we add. Now we just need to figure out the probability of
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that happening if the true effect is to lower the mean by 6 points. That’s
pretty easy to do - we know that if we subtract off the mean and divide by
the standard deviation, then we’ve standardized our variable and can look
up probabilities using the standard normal table. So to find the probability
of being less than the critical value, we:

Φ


(

50− 1.96

(√
62

n

))
− 54√

62

n

 (23)

And then we add that to the probability of being greater than our other
critical value:

1− Φ


(

50 + 1.96

(√
62

n

))
− 54√

62

n

 (24)

So Equation 23 plus Equation 24 gives us the probability of rejecting the
null hypothesis if the true mean is actually 54 instead of 50.

Now we can actually answer the question that we’re interested in. We
want to know the number of participants needed in order to detect this effect
with a probability of 0.90.

our_power_test <- function(n){
left <- pnorm(((50 - 1.96 * sqrt(6 ^ 2 / n)) - 54) / sqrt(6 ^ 2 / n))
right <- 1 - pnorm(((50 + 1.96 * sqrt(6 ^ 2 / n)) - 54) / sqrt(6 ^ 2 / n))
left + right

}

library(ggplot2)

ggplot(data.frame(n=c(0, 100)), aes(n)) +
stat_function(fun = our_power_test) +
geom_hline(yintercept = .9, linetype = "dashed")

So from Figure 3, we can see that we’d need about 25 people in order to
detect this with 90 percent probability.
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Figure 3: Power tests
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